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Abstract

The use of computer simulation techniques represents a major ad-
vancement in reliability assessment in structural engineering. While Monte
Carlo methods have gradually come to be recognized as an important tool
for many applied disciplines, its widespread acceptance has only occurred
in recent years due to advancements in computer technology in terms
of memory, speed, and cost. The excellent text by Marek, Gustar and
Anagnos [1] put forward a road map as well as numerous examples to
guide the reader who is interested in simulation-based assessment of re-
liability of structural designs subject to various stress loading schemes.
Not only are Monte Carlo methods material-saving and time-saving for
actual experimentation, they also provide useful teaching tools for the
engineer-in-training in university curriculum.

One outstanding feature mentioned in [1] is the generation of random
samples based on bounded histograms corresponding to different loading
characteristics. Many well-known parametric models such as the normal
and gamma distributions have unbounded supports. In order to employ
these distributions to model structural engineering, truncation and nor-
malization become necessary to produce bounded histograms. Moreover,
in situations where parametric modelling is unsatisfactory, the program
M-Star mentioned in [1] actually generates random data (for example, the
wind loading effect may be presented by the WIND1 histogram) which
may not correspond to any common parametric distributions. (There are
many such histograms deployed in [1].) This feature, the simulation of
data from a bounded histogram, not necessarily of the parametric type,
is at the heart of the improved Monte Carlo techniques in reliability as-
sessment.

In the same time period when there was significant advancement in
computer technology, the subfield in statistics know as ”nonparametric
function estimation” has seen important developments as well. Various
techniques in estimation such as the kernel method, splines, local poly-
nomials, and wavelets have now become mainstream statistical tools. In
particular, the theory and implementation of kernel density estimation,



including the setting when the underlying distribution has bounded sup-
port, are by now well-understood.

Here, we propose to improve on the ”bounded histograms” technique
mentioned earlier by the kernel method. A nonparametric method in the
context of reliability assessment is especially relevant since the data sets
are typically of sizes where asymptotics become effective. We demonstrate
by an example the effect of generating random samples from a kernel
density estimate(the smoothed histogram) on subsequent assessment of
reliability.
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error, smoothing, boundary, bootstrap.

1 Introduction

The excellent text by Marek, Gustar and Anagnos [1] represents a path-breaking
effort towards the use of Monte Carlo techniques in structural engineering. Com-
pelling discussions have already been presented in [1] as well as Marek and
Brozzetti [2], Marek, Brozzetti and Gustar [3] in regard to the role and recog-
nition of stochasticity in many situations encountered in reliability assessment.

At the heart of this advancing technology is the generation of random sam-
ples corresponding to the distribution of various characteristics in structural
analysis. Traditionally, simulations were based on parametric models such as
the Gaussian, the Poisson, and the Gamma distributions. Frequently a trun-
cation/normalization is necessary to satisfy the bounded support requirement
in real applications. An important contribution of [1] and [3] is the genera-
tion of random variates from distributions which may not be easily described in
parametric forms. Loading characteristics such as described by the histograms
of high wind (WIND1) and yield stress of steel A36 (A572) are among many
such distributions included in the two texts mentioned above for Monte Carlo
studies.

Presently in [1] and [3], the generation of random samples from these types
of continuous models is accomplished via a piecewise uniform quantile approxi-
mation (see [3] and also Popela [4]). The resulting histogram is constructed with
as many as 256 bins and the original data set can be of sizes up to 60,000. For
most applications, whether pedagogical or professional, these specifications are
more in keeping with the spirit of ”asymptotics” than many other applications
of statistical estimation in disciplines elsewhere.

As structural engineers are moving from a deterministic to a probabilistic
way of thinking, statisticians have also been breaking new grounds in non-
parametric function estimation in recent times. Starting from the seminal
work of Rosenblatt [5] on density estimation, which ushered in the by now
well-established kernel technology, related developments that followed include
splines, local polynomials and wavelets. These methods, though with their ori-
gins in numerical analysis, have become mainstream statistical tools nowadays.
It is thus of some interest to explore Monte Carlo simulation by using these new



tools. In the sequel, we will consider only the kernel method for definiteness
and because the theory and practice behind this method are better understood.
The motivation of our exercise is one of possible refinement. We endorse whole-
heartedly the mission of this colloquium - that of incorporating randomness in
reliability assessment in structural engineering.

2 Histogram and kernel estimation of a density

In this section, we will introduce the concept and notations of the histogram
and kernel density estimation. Let X7, ..., X, denote an i.i.d. sample with
common cdf F(x), density f(z). Since we are interested in observations which
are typically bounded, without loss of generality, we will assume the support
of the distribution to be the unit interval [0,1]. For constructing the bounded
(support) histogram (for approximating f(z)), we assume the unit interval I is
partitioned into m equally-spaced bins as follows:

I=LULU..UI,

where I= [’“m;1 ,%) for k=1,....,m—1; and I,= [mT_l , 1]. The binwidth
is therefore 1/m. Define the histogram estimate of f(z) by the following: Let
F,(z) be the empirical cdf based on the original data, i.e., let F,(z) be the
relative cumulative frequency of the original observations falling below z. Also
let k(x) be that integer such that Ij(,) contains 2. Then

1
m

fn(@) = Fn(Iy(2))/(—)- (1)

Thus f,(x) is the relative frequency of the interval Ij) normalized by the
binwidth. Note that n - F,(z) is a binomial r.v. with n trials and success
probability P(X;€y (). For n sufficiently large, a Taylor expansion of f in a
neighborhood of z plus standard calculations yield

bias(fn(x)) = Efn(z) — f(2) = ——

m
var(fa(z)) = f(z) - n + o

Hence the (asymptotic) mean square error
MSE(fn(x)) = (bias)? + variance

converges to 0 if m = m(n) —oo sufficiently slowly so that m/n — 0 as n — oc.
Next, we define the kernel estimate (see [5])

Ful) = %; %w (w —ij) | ()




where w is called the kernel (w is typically a symmetric density) and b is
called the binwidth. f, can be thought of as the generalization of a "moving
histogram” when w is the uniform density on [-1,1], for then
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s1}:%i1{xje[w—b,z+b]}+(2b), (5)

where I{A} is the indicator of an event A. In words, the moving histogram is
just the relative frequency of the interval [z — b,z + b] normalized by binwidth.
For the kernel estimate given by (4), if w is a symmetric kernel, for n sufficiently
large, standard calculations involving a Taylor expansion just as in the histogram
consideration lead to

vias(fole) = (L2 [l -2 +o02) (6)
var(Fu@) = /@) [ w(wdu] - = + o) ™)

As in the histogram case, if b = b(n) — 0 in such a way that nb — oo as n — oo,
then the MSE(f,(z)) — 0 as n — oco. Since b is a gauging quantity balancing
between the bias and the variance, it is also called a smoothing parameter.
In other words, the kernel method is a smoothing procedure. An inspection
of expressions (2), (3), (6) and (7) reveals (by equating 1/m and b) that the
variance of both estimates are of the same rate of convergence, but the smoothed
estimate has a bias which decays faster than the histogram. Of course the MSE
consideration is only a basic performance criterion. For a more detailed and
thorough treatment of the theory and practical implementation of the kernel
method, please refer to Silverman [6], Hardle 7], Scott [8], and Wand and Jones

[9]-

3 Estimating a density with bounded support

In Sec. 2, the construction of a histogram assumes f has bounded support a
priori. For the kernel method, formulae (6) and (7) are valid if z is an interior
point of the support, i.e., z is away from either endpoint of the support by
at least one binwidth. Otherwise z is said to be a boundary point. It can be
shown that the bias of f,(z) at a boundary point becomes O(binwidth) rather
than O((binwidth)?). Intuitively this happens since a boundary point ”sees”
more sample observations towards the interior than the boundary, so that the
cancellation effect of a symmetric kernel cannot be exploited (as in the case of
an interior point). One way to correct this is to use the so-called "boundary
kernels” (see Miiller [10]). Another method is to use the Richardson extrapola-
tion (see Schucany and Sommers [11]). For either method, the correction must
be made one boundary point at a time, at the cost of computational efficiency.
The bias will become O((binwidth)?) again, but the variance will also increase.



Nevertheless, boundary correction is effective, especially when the sample size
is moderate.

However, for sample sizes and binwidths employed in [1] in constructing a
histogram (or a smoothed density estimate) for use subsequently in generating
simulated samples, the variance term typically dominates the (bias)? term in
the MSE decomposition. Thus boundary correction may not be that critical
under this scenario. This means that the bounded support requirement does
not pose a severe problem for either the histogram or the kernel approach, for
the binwidths and sample sizes so chosen.

4 Histogram and kernel density estimate based
reliability assessment

For simplicity, we will only consider reliability assessment based on a single
loading r.v. X. We will assume X is continuous with cdf F(z), density f(z),
support = [0, 1]. In general, a reliability measure can be formulated as a func-
tional T'(F'). If T is linear, then there is a function ¢(z) such that

T(F) = / Ha)dF (z) = / H(z) f () da. (8)

When F' is unknown, but an i.i.d. sample of X is available, then there are at
least three possible estimators of T'(F')

(i) T(Fp) = [ t(z)dFu(2) = %

() T(f) = [ o) fal@)dz
(i) T(fn) = [ t(z) fu(z)dz.

If repeated samples from F' are available, one can assess the standard error, or
even the sampling distribution of T'(F,) (likewise for T'(f,,) and T(f,) ). Absent
repeated samples from F', one can generate samples from F}, (or f,, or f,). This
procedure is known as the bootstrap (see Efron [12]). If one were only comparing
T(F,) with T(f,), there exists some study by Silverman and Young [13] who
demonstrated that if ¢(x) satisfies a certain differentiability condition, then there
are situations under which the smooth bootstrap (the sample generated by a
smoothed density estimate) performs better than the standard bootstrap (the
samples generated by F,). But their study did not consider T'(f,), and their
results are not applicable to functionals such as

t(X;);
=1

T(F)=P(X >a) = /I{x > a}dF(z) 9)

for some known threshold value a. This particular functional corresponds to
exceedance probability - a frequently encountered reliability measure.

For the remainder of this discussion, we will focus on the estimation of the
quantity



§=P(X <a)=1-T(F).

Let Xi(1),...,Xn(1) be an i.i.d. sample from f,, and let X;(2),..., Xn(2) be
an i.i.d. sample from f,. Consider estimators

Without going into details, it can be shown that

bias(6,) = —@[% —a)® + J;LTZ)[% —al+ o(%), (10)
bias(6s) = [f’;a) /qu(u)du] % + o(b?), (11)

while the asymptotic variance of both estimators are, to the first order

1 1
Fla)l - Fa)] - (7 +)- (12)
In terms of convergence rates, by corresponding b with 1/m, the bias terms
(10),(11) are comparable. More importantly, (10) - (12) suggest that the MSE
of both estimators of 8 (hence in assessing the reliability P(X > a)) is dictated
by the binwidth and sample size of the original data set, no matter how much
larger the simulated sample size N is, relative to n.

5 Conclusion

Our preliminary investigation showed that for a reliability measure such as (9),
using a smoothed (kernel) density estimate instead of a histogram at the initial
stage in generating Monte Carlo samples does not necessarily produce substan-
tial advantages in terms of MSE performance. For other functionals for which
t(x) (see(8)) satisfies a certain differentiability condition, one conjectures that
results similar to those in [13] might hold, although such a conjecture still awaits
a more rigorous verification. Finally, we conclude with the following comments:

(a) For some mixed distributions which have a discrete and a continuous
component, such as those one occasionally encounters in certain failure models,
it might be easier to use a histogram approximation rather than a procedure in
which one has to deal with estimating a discrete component and then smoothing
the continuous component separately.

(b) Ultimately, in order to gain wide acceptance of this Monte Carlo method,
certainly much work is needed on the educational front. But for serious pro-
fessional applications, it is imperative that the integrity of the initial samples



(from which subsequent Monte Carlo simulations are based) be of the high-
est standard. One might even envision that in the future, specifications of the
stochastic features of loading materials are routinely supplied by manufacturers,
in compliance with official requirements.
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